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“Classic” linear consumption pattern
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Circular Economy of Production Systems
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Nature Works in Cycles —e.g., The Nitrogen Cycle

Non-reactive Nitrogen

Atmospheric Nitogen

Reactive Nitrogen

Organic N in
live plants

plant biomass

Soil mineral N
(NH4+, NO,, N03‘)

Soil Organic N
(litter, humus,
microbes)

Mineralization
Nitrification




The Global Water Cycle

P=120 Advection=47

Atmospheric transport

Precipitation

Evapotranspiration

(1 unit=1012m3/y) cean & land transport

Data Source: Chow et al., (1988)



How Can we Promote a Circular Economy of Water?




Most human water we uses are for agriculture

...mainly for food production

Water Footprint Water Use

M Agriculture B Food Production

M Domestic B Domestic

W Industrial ™ Drinking

(Units: m3/person/yr)

(data from Chapagain and Hoekstra, 2004) (data from Falkenmark & Rockstrom, 2005)



Water Use in Agriculture

19% of agricultural land is irrigated and produces 40% of the food

Rainfed Irrigated

Uses “green” water Both “blue & green” water

“Green Water”: Root-zone soil moisture
“Blue Water”: Water from Rivers, Lakes, Aquifers



Global Freshwater Resources are Limited

Human appropriation of water
resources destroys habitat & depletes
water stocks

Estimated global groundwater depletion, 1900-2008
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Sustainable and Unsustainable Irrigation
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40% of irrigation is unsustainable



Increase in Demand

Blofuels 2-6% of Water Use
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World population projections
IIASA probabilistic projections compared to UN projections
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Erisman et al., Nature Geoscience, 2012.

How a century of ammonia synthesis
changed the world



Meat Consumption vs. GDP per Capita (2013) Meat Consumption vs. GDP per Capita (1961-2013)

Meat Consumption per Capita (kg/yr)
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Water for Energy

BLUE WATER

Blue Water Consumption (x 10 12 m3 y1)
CONSUMPTION FOR ENERGY
(IEA, 2016; D’Odorico et al., Rev. of Geophys., 2018) PRODUCTION

Energy Production '

Power Biofuels
Generation

Global Irrigation

Fossil Fuels
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Areas where shale oil/gas extraction could compete for water with agriculture

S

- Non Water Scarce
- Water Scarce
' Shale Basin

(Rosa et al., ERL, 2018)

Are we running out of Freshwater Resources for Food and Energy?



Water Limitations in Coal Fired Power Plants

Increasing water needs from Carbon Capture and Storage
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How can we meet the increasing demand for water for food?

Scientists often advocate for
intensification (e.g., Foley et al., 2011)
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“Bisogna dare la massima
fertilita’ ad ogni zolla di terra”

(Scritta che appare sul muro del consorzio di
bonifica di Mogliano Veneto)

... is there enough water to do it sustainably?




by closing the yield gap we can feed 4 Billion people

Billions of people
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is there enough water to do it sustainably?

Yield Gaps (Mueller et al., 2012)

Major cereals: attainable yield achieved (%)
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If we account for water availability and environmental flows

It is possible to sustainably

- expand irrigation to 26% of currently rainfed areas

- feed an additional 2.8 billion people

Eliminating unsustainable irrigation:

- in th|s case the world could feed addltlonal 1 8 b|II|on people

Current Sustainable
Current Unsustainable
Yield Gap Closure Sustainable

Yield Gap Closure Unsustainable

Primarily Rainfed s (Rosa et al., ERL, 2018)
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Effects of Climate Change on Irrigation Suitability

» Sustainable irrigation expansion potential under baseline and 3 °C warmer climate conditions with respect to preindustrial era.

RCP8.5: Climate models: GFDL-ESM2M, HadGEM2-ES, MIROC-ESM-CHEM
Hydrological Models: LPJmL, H8, WATERGAP2
—s. Crop Water Model: WATNEEDS (Chiarelli et al., 2020)
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g D Not suitable for sustainable irrigation expansion

- Suitable for irrigation expansion with small monthly storage - soft-path approach

"t D Irrigation expansion with small monthly storage and 20% deficit irrigation

. Irrigation expansion with large annual storage - hard-path approach
- Primarily rain-fed
- Currently irrigated croplands

Baseline 3C Warmer



Global potential for “sustainable” irrigation expansion
Expansion of Irrigation to Rainfed Areas
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- Suitable for irrgation expansion with small monthly storage - soft-path approach
Irrigation expansion with small monthly storage and 20% deficit irrigation

I (rrigation expansion with large annual storage - hard-path approach

* Increasing needs for water storage




The Problem of Water Storages
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We live in an interconnected planet
Virtual Water Trade

Global self-sufficiency ratios.

Not Self-Sufficient

D No Data

(c) Middle-of-the-Road (d) Business-as-Usual

Self-sufficiency ratios in year 2000 (a) and projected
for 2100 (Beltran-Pena, et al., ERL, 2020) (Carr et al., 2017)

RCP: SCEI’I.GI’IOS (RCP 2.6, RCP 6.0, and RCP 8.5) from five 24% of the food (and water) we eat is internationally traded
global gridded crop models
Shared socioeconomic pathways: SSP1, SSP2, SSP3 2Diets and Population




Toward a Circular Economy of Water in Agriculture
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Repurpose & Retrofit

“Reuse what you can, recycle what you cannot reuse, repair what is broken,
remanufacture what cannot be repaired” (Stahel, Nature, 2016)



How can we meet the increasing demand for water for food?

- Sustainable irrigation expansion on rainfed areas
- Use water more efficiently - “more crop per drop”

Sustainable . | | |
Intensification - Soil wat?r conservation (reduce. 5'0|I evaporation) | |
- Crops with better water-use efficiency. Not necessarily transgenic.
Plant the right crop in the right place
Reduce the - Reduce waste of fooo!, water, nutrients
Demand - Change diets (less animal products)

Circular economy of food




More optimal crop distributions

Use crops with better water-use efficiency. Plant the right crop in the right place
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Crop replacement criteria to “optimize
production
* Increase in calorie production (+46% increase)
* Increase in protein production(+34% increase)
* Decrease in water consumption (-5% decrease) - Feed 825 million people more

- Reduce water use by 12%



Reduce Food Waste

* One third of all food
produced for human
consumption in the
world is lost or wasted

Per capita food losses and waste (kglyear)

(Gustavsson et al. 2011)
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High Technology Solutions

. Aquaponics )
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aquaculture
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Pros:

* Plants grow faster Bacteria turn Water rich in
fish excrement fish excrement

* Take less space into minerals is moved to

« Don’t need to invest much in root growth to find nutrients . (;-Ig};:'u%ﬁ;‘;r hydgﬁf"'c

e Efficient nutrient regulation

Cons:

The cost of the system, maintenance, and energy requirement

D’Odorico et al., Rev. of Geophys., 2018



Circular Economy of Insects
(low technological inputs)

Land use for the production \\‘

of 1 kg of protein Insect \

(m?) \ Excrements |
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Producion

Vian Huis, 2013 van Huis et al, 2013)

(D’Odorico et al., Rev. of Geophys., 2018)



Other Examples

Biogas production from food waste

Fertilizer production from wastewater
treatment

Livestock Waste

Anaerobic
Digester

Heat Electricity
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Biogas
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* Fertilizer
*Soil

amendments

* Livestock
bedding

(Graphic by Sara Tanigawa, EESI)

Gas Grid




Decreased Reliance on Animal Products

Cultured Meat
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e Cultural barriers
(D’Odorico et al., Rev. of Geophys., 2018)



* Treated water

Increase water availability Is Salty Water the Solution?

 Production water

What are the costs? e Desalination
The use of this water depends on its added
value in the production process. oML e BIcE
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Conclusions

Water constrains food & energy
production

Crop yields and irrigation expansion
are limited by water availability

The expansion of irrigation strongly
depends on water storages

Use of treated water in agriculture

Consumption moderation, food &
water waste reduction, circular
economy of food wand water




